Package 'ERPeq'

Title: Probabilistic Hazard Assessment
Description: Computes the probability density and cumulative distribution functions of fourteen distributions used for the probabilistic hazard assessment. Estimates the model parameters of the distributions using the maximum likelihood and reports the goodness-of-fit statistics. The recurrence interval estimations of earthquakes are computed for each distribution.
Authors: Emrah Altun [aut, cre, cph], Gamze Ozel [ctb]
Maintainer: Emrah Altun <[email protected]>
License: GPL-3
Version: 0.1.0
Built: 2025-02-14 05:26:12 UTC
Source: https://github.com/cran/ERPeq

Help Index


Cumulative distribution function of the Birnbaum-Saunders-Generalized Pareto distribution

Description

Cumulative distribution function of the Birnbaum-Saunders-Generalized Pareto distribution

Usage

cdfbsgdp(par, x)

Arguments

par

parameter vector of the Birnbaum-Saunders-Generalized Pareto distribution. First parameter is the shape, second parameter is the scale parameter. Third parameter is the lower bound parameter.

x

vector of observations or single value

Value

return the value of the cdf of the Birnbaum-Saunders-Generalized Pareto distribution

References

Altun, E., Ozel, G. A novel approach to probabilistic hazard assessment: BSGPD model. (Under Review)

Examples

cdfbsgdp(c(0.5,2,0.5),3)

Cumulative distribution function of the exponentiated exponential distribution

Description

Cumulative distribution function of the exponentiated exponential distribution

Usage

cdfeexp(par, x)

Arguments

par

parameter vector of the exponentiated exponential distribution. First parameter is the shape, second is the scale parameter.

x

vector of observations or single value

Value

return the value of the pdf of the exponentiated exponential distribution

References

Gupta, R. D., & Kundu, D. (1999). Theory & methods: Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41(2), 173-188.

Examples

cdfeexp(c(0.5,0.3),2)

Cumulative distribution function of the exponentiated Rayleigh distribution

Description

Cumulative distribution function of the exponentiated Rayleigh distribution

Usage

cdfer(par, x)

Arguments

par

parameter vector of the exponentiated Rayleigh distribution. First parameter is the scale, second is the shape parameter.

x

vector of observations or single value

Value

return the value of the pdf of the exponentiated Rayleigh distribution

References

Vodă, V. G. (1976). Inferential procedures on a generalized Rayleigh variate. I. Aplikace matematiky, 21(6), 395-412.

Examples

cdfer(c(0.5,0.3),2)

Cumulative distribution function of the exponentiated Weibull distribution

Description

Cumulative distribution function of the exponentiated Weibull distribution

Usage

cdfew(par, x)

Arguments

par

parameter vector of the exponentiated Weibull distribution. First parameter is the shape, second is the scale parameter and third parameter is shape parameter.

x

vector of observations or single value

Value

return the value of the pdf of the exponentiated Weibull distribution

References

Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE transactions on reliability, 42(2), 299-302.

Examples

cdfew(c(0.5,0.3,0.6),2)

Cumulative distribution function of the Gamma distribution

Description

Cumulative distribution function of the Gamma distribution

Usage

cdfgamma(par, x)

Arguments

par

parameter vector of the gamma distribution. First parameter is the shape and second is the scale parameter

x

vector of quantiles

Value

return the value of the cdf of the gamma distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

cdfgamma(c(2,3),5)

Cumulative distribution function of the generalized gamma distribution

Description

Cumulative distribution function of the generalized gamma distribution

Usage

cdfggamma(par, x)

Arguments

par

parameter vector of the generalized gamma distribution. First parameter is the dispersion, second is the location parameter and third is the family parameter.

x

vector of observations or single value

Value

return the value of the pdf of the generalized gamma distribution

References

Stacy, E. W. (1962). A generalization of the gamma distribution. The Annals of mathematical statistics, 1187-1192.

Examples

pdfggamma(c(2,5,3),3)

Cumulative distribution function of the gumbel distribution

Description

Cumulative distribution function of the gumbel distribution

Usage

cdfgumbel(par, x)

Arguments

par

parameter vector of the gumbel distribution. First parameter is the location, second is the scale parameter.

x

vector of observations or single value

Value

return the value of the pdf of the gumbel distribution

References

Gumbel, E. J. (1941). The return period of flood flows. The annals of mathematical statistics, 12(2), 163-190.

Examples

pdfgumbel(c(0.5,0.3),2)

Cumulative distribution function of the inverse gamma distribution

Description

Cumulative distribution function of the inverse gamma distribution

Usage

cdfinvgamma(par, x)

Arguments

par

parameter vector of the inverse gamma distribution. First parameter is the shape, second is the rate parameter.

x

vector of observations or single value

Value

return the value of the pdf of the inverse gamma distribution

References

Cook, J. D. (2008). Inverse gamma distribution. online: http://www. johndcook. com/inverse gamma. pdf, Tech. Rep.

Examples

cdfinvgamma(c(2,5,3),3)

Cumulative distribution function of the inverse Weibull distribution

Description

Cumulative distribution function of the inverse Weibull distribution

Usage

cdfiwweibull(par, x)

Arguments

par

parameter vector of the inverse Weibull distribution. First parameter is the shape and second is the scale parameter

x

vector of quantiles

Value

return the value of the cdf of the inverse Weibull distribution

References

Mudholkar, G. S., & Kollia, G. D. (1994). Generalized Weibull family: a structural analysis. Communications in statistics-theory and methods, 23(4), 1149-1171.

Examples

cdfiwweibull(c(2,3),5)

Cumulative distribution function of the Levy distribution

Description

Cumulative distribution function of the Levy distribution

Usage

cdflevy(par, x)

Arguments

par

parameter vector of the Levy distribution. First parameter is the location, second is the scale parameter.

x

vector of observations or single value

Value

return the value of the pdf of the Levy distribution

References

Nolan, J. P. (2003). Modeling financial data with stable distributions. In Handbook of heavy tailed distributions in finance (pp. 105-130). North-Holland.

Examples

cdflevy(c(0.5,0.3),2)

Cumulative distribution function of the log-normal distribution

Description

Cumulative distribution function of the log-normal distribution

Usage

cdflnormal(par, x)

Arguments

par

parameter vector of the log-normal distribution. First parameter is the shape and second is the scale parameter

x

vector of quantiles

Value

return the value of the cdf of the log-normal distribution

References

Heyde, C. C. (1963). On a property of the lognormal distribution. Journal of the Royal Statistical Society: Series B (Methodological), 25(2), 392-393.

Examples

cdflnormal(c(2,3),5)

Cumulative distribution function of the Pareto distribution

Description

Cumulative distribution function of the Pareto distribution

Usage

cdfpareto(par, x)

Arguments

par

parameter vector of the Pareto distribution. First parameter is the shape and second is the scale parameter

x

vector of quantiles

Value

return the value of the cdf of the Pareto distribution

References

Arnold, B. C. (1983). Pareto Distributions, International Cooperative Publishing House.

Examples

cdfpareto(c(2,5),2)

Cumulative distribution function of the Rayleigh distribution

Description

Cumulative distribution function of the Rayleigh distribution

Usage

cdfrayleigh(par, x)

Arguments

par

scale parameter vector of the Rayleigh distribution.

x

vector of quantiles

Value

return the value of the cdf of the Rayleigh distribution

References

Siddiqui, M. M. (1964). Statistical inference for Rayleigh distributions. Journal of Research of the National Bureau of Standards, Sec. D, 68(9), 1005-1010.

Examples

cdfrayleigh(c(2),5)

Cumulative distribution function of the Weibull distribution

Description

Cumulative distribution function of the Weibull distribution

Usage

cdfweibull(par, x)

Arguments

par

parameter vector of the Weibull distribution. First parameter is the shape and second is the scale parameter

x

vector of quantiles

Value

return the value of the cdf of the weibull distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

cdfweibull(c(2,3),5)

Earthquake dataset

Description

The elapsed time (year) between the earthquakes with 6 and 6.5 magnitudes in Turkey occured between the years of 1990-2021

Usage

data_earthquake_6_6.5

Format

A numeric vector


Earthquake dataset

Description

The elapsed time (year) between the earthquakes with 6.5 and 7 magnitudes in Turkey occured between the years of 1990-2021

Usage

data_earthquake_6.5_7

Format

A numeric vector


Earthquake dataset

Description

The elapsed time (year) between the earthquakes having the magnitudes higher than 7 in Turkey occured between the years of 1990-2021

Usage

data_earthquake_7

Format

A numeric vector


Probabilistic estimation of earthquake recurrence interval using exponentiated exponential distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

expexpcp(fit, r, te)

Arguments

fit

Fit is the fitexpexp object. See ?fitexpexp for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitexpexp(c(1,1),data=data_earthquake_7)
expexpcp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using exponentiated Rayleigh distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

expraycp(fit, r, te)

Arguments

fit

Fit is the fitexprayleigh object. See ?fitexprayleigh for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitexprayleigh(c(0.5,0.5),data=data_earthquake_7)
expraycp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using exponentiated Weibull distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

expweicp(fit, r, te)

Arguments

fit

Fit is the fitexpweibull object. See ?fitexpweibull for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitexpweibull(c(1,1,1),data=data_earthquake_7)
expweicp(fit,r=2,te=5)

Fitting the Birnbaum-Saunders-Generalized Pareto distribution

Description

Fitting the Birnbaum-Saunders-Generalized Pareto distribution

Usage

fitbsgpd(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

library(VGAM)
data=ERPeq::rbsgpd(500,5,0.7,0.2)
fitbsgpd(starts =c(1,1),data=data)

Fitting the exponentiated exponential distribution

Description

Fitting the exponentiated exponential distribution

Usage

fitexpexp(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

data=rexpexp(500,2,3)
fitexpexp(starts =c(2,2),data=data)

Fitting the exponentiated exponentiated Rayleigh distribution

Description

Fitting the exponentiated exponentiated Rayleigh distribution

Usage

fitexprayleigh(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

data=rexprayleigh(500,2,3)
fitexprayleigh(starts =c(2,2),data=data)

Fitting the exponentiated Weibull distribution

Description

Fitting the exponentiated Weibull distribution

Usage

fitexpweibull(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

data=rexpweibull(500,2,3,5)
fitexpweibull(starts =c(2,2,2),data=data)

Fitting the gamma distribution

Description

Fitting the gamma distribution

Usage

fitgamma(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

datagamma=rgamma(500,2,2)
fitgamma(starts =c(2,2),data=datagamma)

Fitting the generalized gamma distribution

Description

Fitting the generalized gamma distribution

Usage

fitggamma(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

library(rmutil)
data=rggamma(500,2,2,2)
fitggamma(starts =c(1,1,1),data=data)

Fitting the Gumbel distribution

Description

Fitting the Gumbel distribution

Usage

fitgumbel(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

library(VGAM)
data=rgumbel(500,2,0.5)
fitgumbel(starts =c(2,2),data=data)

Fitting the inverse gamma distribution

Description

Fitting the inverse gamma distribution

Usage

fitinvgamma(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

library(invgamma)
data=rinvgamma(500,2,0.5)
fitinvgamma(starts =c(2,2),data=data)

Fitting the gamma distribution

Description

Fitting the gamma distribution

Usage

fitiweibull(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

set.seed(7)
data=rgamma(500,shape=1,scale=1)
fitiweibull(starts =c(0.5,0.5),data=data)

Fitting the Levy distribution

Description

Fitting the Levy distribution

Usage

fitlevy(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

library(VGAM)
data=ERPeq::rlevy(100,2,0.1)
fitlevy(starts =c(0.1),data=data)

Fitting the log-normal distribution

Description

Fitting the log-normal distribution

Usage

fitlnormal(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

data=rlnorm(500,2,0.5)
fitlnormal(starts =c(2,2),data=data)

Fitting the Pareto distribution

Description

Fitting the Pareto distribution

Usage

fitpareto(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

library(VGAM)
data=VGAM::rpareto(500,5,2)
fitpareto(starts =c(2),data=data)

Fitting the Rayleigh distribution

Description

Fitting the Rayleigh distribution

Usage

fitrayleigh(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

library(VGAM)
data=rrayleigh(500,2)
fitrayleigh(starts =c(2),data=data)

Fitting the Weibull distribution

Description

Fitting the Weibull distribution

Usage

fitweibull(starts, data)

Arguments

starts

A vector defining the starting values for the Nelder-Mead algorithm.

data

A vector containing the observations

Value

List the estimated parameters of the distribution with standard errors and goodness-of-fit statistics.

Examples

dataweibull=rweibull(500,2,2)
fitweibull(starts =c(2,2),data=dataweibull)

Probabilistic estimation of earthquake recurrence interval using gamma distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

gammacp(fit, r, te)

Arguments

fit

Fit is the fitgamma object. See ?fitgamma for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitgamma(c(1,1),data=data_earthquake_6_6.5)
gammacp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using generalized gamma distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

ggammacp(fit, r, te)

Arguments

fit

Fit is the fitggamma object. See ?fitggamma for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitggamma(c(1,1,1),data=data_earthquake_6_6.5)
ggammacp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using Gumbel distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

gumbelcp(fit, r, te)

Arguments

fit

Fit is the fitgumbel object. See ?fitgumbel for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitgumbel(c(1,1),data=data_earthquake_7)
gumbelcp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using inverse gamma distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

invgammacp(fit, r, te)

Arguments

fit

Fit is the fitinvgamma object. See ?fitinvgamma for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitinvgamma(c(1,1),data=data_earthquake_7)
invgammacp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using inverse Weibull distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

iweibullcp(fit, r, te)

Arguments

fit

Fit is the fitiwebull object. See ?fitiwebull for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitiweibull(c(1,1),data=data_earthquake_6.5_7)
iweibullcp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using Levy distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

levycp(fit, r, te)

Arguments

fit

Fit is the fitlevy object. See ?fitlevy for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitlevy(c(1),data=data_earthquake_7)
levycp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using log-normal distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

lnormalcp(fit, r, te)

Arguments

fit

Fit is the fitlnormal object. See ?fitlnormal for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitlnormal(c(1,1),data=data_earthquake_6.5_7)
lnormalcp(fit,r=2,te=5)

Probabilistic estimation of earthquake recurrence interval using Pareto distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

paretocp(fit, r, te)

Arguments

fit

Fit is the fitpareto object. See ?fitpareto for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

library(VGAM)
data=VGAM::rpareto(200,2,5)
fit=fitpareto(c(0.5),data=data)
paretocp(fit,r=2,te=5)

Probability density function of the Birnbaum-Saunders-Generalized Pareto distribution

Description

Probability density function of the Birnbaum-Saunders-Generalized Pareto distribution

Usage

pdfbsgdp(par, x)

Arguments

par

parameter vector of the Birnbaum-Saunders-Generalized Pareto distribution. First parameter is the shape, second parameter is the scale parameter. Third parameter is the lower bound parameter.

x

vector of observations or single value

Value

return the value of the pdf of the Birnbaum-Saunders-Generalized Pareto distribution.

References

Altun, E., Ozel, G. A novel approach to probabilistic hazard assessment: BSGPD model. (Under Review)

Examples

pdfbsgdp(c(2,0.5,0.5),1)

Probability density function of the exponentiated exponential distribution

Description

Probability density function of the exponentiated exponential distribution

Usage

pdfeexp(par, x)

Arguments

par

parameter vector of the exponentiated exponential distribution. First parameter is the shape, second is the scale parameter.

x

vector of observations or single value

Value

return the value of the pdf of the exponentiated exponential distribution

References

Gupta, R. D., & Kundu, D. (1999). Theory & methods: Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41(2), 173-188. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

pdfeexp(c(0.5,0.3),2)

Probability density function of the exponentiated Rayleigh distribution

Description

Probability density function of the exponentiated Rayleigh distribution

Usage

pdfer(par, x)

Arguments

par

parameter vector of the exponentiated Rayleigh distribution. First parameter is the scale, second is the shape parameter.

x

vector of observations or single value

Value

return the value of the pdf of the exponentiated Rayleigh distribution

References

Vodă, V. G. (1976). Inferential procedures on a generalized Rayleigh variate. I. Aplikace matematiky, 21(6), 395-412.

Examples

pdfer(c(0.5,0.3),2)

Probability density function of the exponentiated Weibull distribution

Description

Probability density function of the exponentiated Weibull distribution

Usage

pdfew(par, x)

Arguments

par

parameter vector of the exponentiated Weibull distribution. First parameter is the shape, second is the scale parameter and third parameter is shape parameter.

x

vector of observations or single value

Value

return the value of the pdf of the exponentiated Weibull distribution

References

Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE transactions on reliability, 42(2), 299-302.

Examples

pdfew(c(0.5,0.3,0.6),2)

Probability density function of the Gamma distribution

Description

Probability density function of the Gamma distribution

Usage

pdfgamma(par, x)

Arguments

par

parameter vector of the gamma distribution. First parameter is the shape and second is the scale parameter

x

vector of observations or single value

Value

return the value of the pdf of the gamma distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

pdfgamma(c(2,3),5)

Probability density function of the generalized gamma distribution

Description

Probability density function of the generalized gamma distribution

Usage

pdfggamma(par, x)

Arguments

par

parameter vector of the generalized gamma distribution. First parameter is the dispersion, second is the location parameter and third is the family parameter.

x

vector of observations or single value

Value

return the value of the pdf of the generalized gamma distribution

References

Stacy, E. W. (1962). A generalization of the gamma distribution. The Annals of mathematical statistics, 1187-1192.

Examples

pdfggamma(c(2,5,3),3)

Probability density function of the gumbel distribution

Description

Probability density function of the gumbel distribution

Usage

pdfgumbel(par, x)

Arguments

par

parameter vector of the gumbel distribution. First parameter is the location, second is the scale parameter.

x

vector of observations or single value

Value

return the value of the pdf of the gumbel distribution

References

Gumbel, E. J. (1941). The return period of flood flows. The annals of mathematical statistics, 12(2), 163-190.

Examples

pdfgumbel(c(0.5,0.3),2)

Probability density function of the inverse gamma distribution

Description

Probability density function of the inverse gamma distribution

Usage

pdfinvgamma(par, x)

Arguments

par

parameter vector of the inverse gamma distribution. First parameter is the shape, second is the rate parameter.

x

vector of observations or single value

Value

return the value of the pdf of the inverse gamma distribution

References

Cook, J. D. (2008). Inverse gamma distribution. online: http://www. johndcook. com/inverse gamma. pdf, Tech. Rep.

Examples

pdfinvgamma(c(2,5,3),3)

Probability density function of the inverse Weibull distribution

Description

Probability density function of the inverse Weibull distribution

Usage

pdfiweibull(par, x)

Arguments

par

parameter vector of the inverse Weibull distribution. First parameter is the shape and second is the scale parameter

x

vector of observations or single value

Value

return the value of the pdf of the inverse Weibull distribution

References

Mudholkar, G. S., & Kollia, G. D. (1994). Generalized Weibull family: a structural analysis. Communications in statistics-theory and methods, 23(4), 1149-1171.

Examples

pdfiweibull(c(2,3),5)

Probability density function of the Levy distribution

Description

Probability density function of the Levy distribution

Usage

pdflevy(par, x)

Arguments

par

parameter vector of the Levy distribution. First parameter is the location, second is the scale parameter.

x

vector of observations or single value

Value

return the value of the pdf of the Levy distribution

References

Nolan, J. P. (2003). Modeling financial data with stable distributions. In Handbook of heavy tailed distributions in finance (pp. 105-130). North-Holland.

Examples

pdflevy(c(0.5,0.3),2)

Probability density function of the log-normal distribution

Description

Probability density function of the log-normal distribution

Usage

pdflnormal(par, x)

Arguments

par

parameter vector of the log-normal distribution. First parameter is the shape and second is the scale parameter

x

vector of observations or single value

Value

return the value of the pdf of the log-normal distribution

References

Heyde, C. C. (1963). On a property of the lognormal distribution. Journal of the Royal Statistical Society: Series B (Methodological), 25(2), 392-393.

Examples

pdflnormal(c(2,3),5)

Probability density function of the Pareto distribution

Description

Probability density function of the Pareto distribution

Usage

pdfpareto(par, x)

Arguments

par

parameter vector of the Pareto distribution. First parameter is the scale and second is the shape parameter

x

vector of observations or single value

Value

return the value of the pdf of the Pareto distribution

References

Arnold, B. C. (1983). Pareto Distributions, International Cooperative Publishing House.

Examples

pdfpareto(c(2,5),3)

Probability density function of the Rayleigh distribution

Description

Probability density function of the Rayleigh distribution

Usage

pdfrayleigh(par, x)

Arguments

par

scale parameter vector of the Rayleigh distribution.

x

vector of observations or single value

Value

return the value of the pdf of the Rayleigh distribution

References

Siddiqui, M. M. (1964). Statistical inference for Rayleigh distributions. Journal of Research of the National Bureau of Standards, Sec. D, 68(9), 1005-1010.

Examples

pdfrayleigh(c(2),5)

Probability density function of the Weibull distribution

Description

Probability density function of the Weibull distribution

Usage

pdfweibull(par, x)

Arguments

par

parameter vector of the weibull distribution. First parameter is the shape and second is the scale parameter

x

vector of observations or single value

Value

return the value of the pdf of the weibull distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

pdfweibull(c(2,3),5)

Probabilistic estimation of earthquake recurrence interval using Rayleigh distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

rayleighcp(fit, r, te)

Arguments

fit

Fit is the fitrayleigh object. See ?fitrayleigh for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitrayleigh(c(1),data=data_earthquake_7)
rayleighcp(fit,r=2,te=5)

Generate random observations from Birnbaum-Saunders-Generalized Pareto distribution

Description

Generate random observations from Birnbaum-Saunders-Generalized Pareto distribution

Usage

rbsgpd(n, beta, alpha, gamma)

Arguments

n

number of observations to be generated from the Birnbaum-Saunders-Generalized Pareto

beta

lower bound parameter of the

alpha

scale parameter of the Birnbaum-Saunders-Generalized Pareto distribution

gamma

shape parameter of the Birnbaum-Saunders-Generalized Pareto distribution

Value

return the random sample generated from scale parameter of the Birnbaum-Saunders-Generalized Pareto distribution distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

rbsgpd(100,2,3,5)

Generate random observations from exponentiated exponential distribution

Description

Generate random observations from exponentiated exponential distribution

Usage

rexpexp(n, alpha, lambda)

Arguments

n

number of observations to be generated

alpha

shape parameter of the exponentiated exponential distribution

lambda

scale parameter of the exponentiated exponential distribution

Value

return the random sample generated from exponentiated exponential distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

rexpexp(100,2,3)

Generate random observations from exponentiated Rayleigh distribution

Description

Generate random observations from exponentiated Rayleigh distribution

Usage

rexprayleigh(n, alpha, beta)

Arguments

n

number of observations to be generated

alpha

shape parameter of the exponentiated Rayleigh distribution

beta

scale parameter of the exponentiated Rayleigh distribution

Value

return the random sample generated from exponentiated exponential distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

rexprayleigh(100,2,3)

Generate random observations from exponentiated Weibull distribution

Description

Generate random observations from exponentiated Weibull distribution

Usage

rexpweibull(n, alpha, beta, theta)

Arguments

n

number of observations to be generated

alpha

shape parameter of the exponentiated Weibull distribution

beta

scale parameter of the exponentiated Weibull distribution

theta

shape parameter of the exponentiated Weibull distribution

Value

return the random sample generated from exponentiated Weibull distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

rexpweibull(100,2,3,2)

Generate random observations from Levy distribution

Description

Generate random observations from Levy distribution

Usage

rlevy(n, mu, c)

Arguments

n

number of observations to be generated

mu

location parameter of the Levy distribution

c

scale parameter of the Levy distribution

Value

return the random sample generated from Levy distribution

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.

Examples

rlevy(500,2,3)

Probabilistic estimation of earthquake recurrence interval using Weibull distribution

Description

Computes the probability of an earthquake within a specified time "r" and elapsed time "te".

Usage

weibullcp(fit, r, te)

Arguments

fit

Fit is the fitweibull object. See ?fitweibull for details.

r

The specified time in which the probability of an earthquake is desired to be calculated.

te

Elapsed time since the last earthquake

Value

A numeric value

References

Pasari, S. and Dikshit, O. (2014). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171, 1251-1281.

Examples

fit=fitweibull(c(1,1),data=data_earthquake_6_6.5)
weibullcp(fit,r=2,te=5)